Distribution Category:
Mathematics and
Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, 11, 60439

ANL-93/40

Using a Transfer Function to Describe the

Load-Balancing Problem
by

Andrew J. Conley

Mathematics and Computer Science Division

November 1993

This work was supported by the Office of Scientific Computing, U.S. Department of En-
ergy, under Contract W-31-109-Eng-38, and by the NSF under Cooperative Agreement
No. CCR-9120008.

Contents

Abstract

1 Introduction

2 Definitions

3 The Model

4 Consequences of the Model
5 Implications

6 Conclusion

References

iii

Using a Transfer Function to Describe

the Load-Balancing Problem
by

Andrew J. Conley

Abstract

The dynamic load-balancing problem for mesh-connected parallel computers can be
clearly described by introducing a function that identifies how much work is to be
transmitted between neighboring processors. This function is a solution to an elliptic
problem for which a wealth of knowledge exists. The nonuniqueness of the solution to
the load-balancing problem is made explicit.

1 Introduction

The dynamic load-balancing problem for mesh-connected parallel processors can be clearly
described by an analogy with problems in vector calculus. Analysis of the equations allows
an analytic solution to be found. The analysis also shows that the solution of the load-
balancing problem is not unique. The lack of uniqueness is the separate problem of problem
partitioning.

The crucial idea of this paper is in the introduction of a transfer function that represents
the transfer of work from one node to another. This transfer function can be computed with
direct methods or iterative schemes. The model of load balancing that I present includes
the iterative schemes of Cybenko [2] and others as a special case. Most important, this
paper connects the study of load-balancing with a wealth of information and experience in

applied mathematics.

2 Definitions

I assume the processors are laid out on a three-dimensional grid. (The results can be
extended easily to one- and two-dimensional grids.) I label the nodes by their distance from
the edge processors. For example, a processor in the left front bottom corner is labeled
(0,0,0). Processor (I, m,n)is [processors from the left edge, m processors from the front,
and n processors from the bottom. The coordinate directions, (z,y, z), are directions of
increasing [, m, and n, respectively (see Figure 1).

Now it is easy to define the following:

o Let Lj ., be the load at node ({,m,n).

o Let Tﬁmm,lem s I De the loads transferred to node (/,m,n) from nodes (I —
1L,m,n),(l,m—1,n),(l,m,n— 1), respectively. When 1}, ,, refers to transfer of load

outside the boundary of the machine, it is defined to be zero (i.e., 7§, , = 0).

L (8,2,3)

=~ (8,1,0)

\

X Y0,0,0) (4,0,0)

Figure 1: A three-dimensional mesh-connected parallel computer. Several computational
nodes are labeled. The load-balancing solution finds the transfers of load between neigh-

boring processors that will make the load on every processor the same.

o Let L?mm be the load at node (I, m,n) after the load has been balanced.

o Define the gradient of the load at each node as

"L
8_ = Ll—l—l,m,n - Ll,m,n
LOT 1 m,n
"L
8_ = Ll,m—l—l,n - Ll,m,n
LOY i mn
"L
8_ — Ll,m,n—l—l Ll,m,n
LOZ 1 m,n
kd
O l,m,n
= oL
o], = 5]
[V l,m,n Y 11 mn

% is defined to be zero at the rightmost nodes. % is defined to be zero at the
L

backmost nodes. g—z is defined to be zero at the topmost nodes.

e Similarly, define the flux into a given node as

[V ' T] = (Tlgfl—l,m,n - Tlgfm,n) + (Tl{/m-|-17n - Tlljmm) + (Tlfm,n+1 - Tﬁm,n)'

l,m,n

o Define V x T as

. . (Tlfm+1,n+1 - Tﬁm,n—l—l) - (Tll,/m—l—l,n—l—l B Tll,/m—l—l,n)
[V X T] = (Tlgfl—l,m,n—l—l - Tlgfm,n—l—l) - (le—l—l,m,n—l—l - le—l—l,m,n)

Lmn Y Y T T
(Tl—l—l,m—l—l,n B Tl,m—l—l,n) - (Tl—l—l,m—l—l,n - Tl—l—l,m,n)

o Define the discrete Laplacian. (Whenever I apply the Laplacian to a vector, I mean
the componentwise application of the Laplacian.)

[VQf]lm " = (fl—l—l,m,n + fl—l,m,n) + (fl,m—l—l,n + fl,m—l,n)
—I_(fl,m,n—l—l + fl,m,n—l) - 6fl,m,n-

3 The Model

In the following, I drop the subscripts. All the terms in the equations should be interpreted
as being true at all points on the mesh at which the equations are defined.
The change in the load (L® — L) at any particular node equals the flux of work into the
node (V- T).
I'-L=V-T. (1)

However, I wish the load L° to be balanced after the workload has been transferred. This
is the same as saying that the difference (of load) between any two nodes is zero, or, using

the notation above,

VIt =o. (2)

Lastly, I wish the workload not to be transferred around any particular loop of processors
(e.g., work transferred from (0,0,0) — (0,0,1) — (0,1,1) — (0,1,0) — (0,0,0)). Hence, I
require that

VxT=0. (3)

Equation 3 can be substituted with other constraints (so-called gauge conditions), but then
Equation (4) in Section 4 is no longer valid.

4 Consequences of the Model
Taking the gradient of Equation (1), I have

V(I'-L) = V(V-T)

4
VI'-VL = V(V-T)
| by vector identity for V x (6 X f)
VI' VL = -Vx(VxT)+V*T
| by Equation 3 and by Equation 2
VI = V7. (4)

I refer to Equation (4) as the flux diffusion equation. The boundary conditions require that
transfers outside the mesh be zero. This requirement leads to the Poisson equation (4) for
the transfer function with Dirichlet (zero) boundary conditions.

5 Implications

The load-balancing problem is one of computing the transfer of load necessary for the load
to be balanced. As the flux diffusion equation (4) makes clear, the transfer function (T°) is
the solution of an elliptic problem. The many diffusion schemes that have been proposed
are iterative schemes for solving equations (1-2); however, they may violate condition (3).

One naive but effective (nondiffusive) load-balancing scheme might be the following. Every
processor balances its load with the loads of all the nodes to its left and right (in its line).
Then every processor balances its load with the loads of all the nodes to its top and bottom.
Finally, every processor balances its load with the loads of all nodes to its front and back.
While this scheme does balance the load, it violates condition (3). Condition (3), however,
is necessary in problems where the partitioning of the work is an important issue.

The transfer function (T') solving Equation (4) is not a unique solution to Equations (1)
and (2). The condition (3) could be relaxed by choosing any A so that

Ve = L-1° (5)

T = —Vo&+VxA, (6)
in order to minimize communication costs during the computational algorithm for which
the load is being balanced. The nonuniqueness of the transfer function is the partitioning
problem.

The derivation of Section 4 has many other implications. By finding a transfer function
that describes the local transfer of load, each processor “knows” how much load it must
transfer to its neighbors. Only one local exchange of load is necessary. In the case of large
load imbalances, the transfer of load from a processor can be greater than the load on the
processor. In this situation, a node can wait until it has received enough work to transfer
to its neighbors.

If the architecture is such that the computational nodes are connected to the communi-
cation network through communication processors (CPs) (where the CP can compute in
addition to communicating), then once the CP knows the load at its processor, the CPs
can calculate what the transfers should be, without communicating with the computational
nodes.

Equation (4) requires only one Poisson solve, namely,

Ve = -1 (7)
T = V& (8)
7-V®(d) = 0. (9)

The solution (®) can be computed as accurately as one wishes by any number of algorithms
since it is a Poisson solve. (Methods include fast Poisson, Jacobi, Gauss-Seidel, multigrid,
domain decomposition, and SOR.) The accuracy of the solution determines the accuracy
of the balancing. Solving Equations (7)—(9) requires the same work as the inner loop
calculations of the algorithm introduced by Heirich and Taylor [1].

Equations (7)—(9) can be solved analytically in terms of the eigenfunctions, z;r, =
cos(mjl/(L —1))cos(mkm/(M — 1)) cos(mpn/(N — 1)), of the discrete Laplacian, where the

number of processors on the grid is LM N. The indices (j, k&, p) index the eigenfunctions,
and the indices (I, m,n) index the processors on the grid. A Greens function formulation
of the solution allows for only local transfer of load and no global solves of the Poisson
equation. The Greens function formulation does require that the change in load at every

processor eventually be sent to every other processor on the grid.

6 Conclusion

By using definitions of measurable quantities on a multiprocessor, the load-balancing prob-
lem can be formulated in terms of the familiar Poisson equation. The solution of this
equation (for which there are many techniques) is a transfer function that describes exactly
how much load must be transferred locally to balance the load.

References

[1] A. Heirich and S. Taylor. A parabolic theory of load balance. Caltech Computer Science
Technical Report, 1993.

[2] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Par-
allel Distrib. Comput., 7:279-301, 1989.

Distribution for ANL-93/40

Internal:
J. M. Beumer (60)
A. J. Conley (10)
F. Y. Fradin
G. W. Pieper
R. L. Stevens
C. L. Wilkinson
TIS File
External:

DOE-0STI, for distribution per UC-405 (54)

ANL-E Library (2)

ANL-W Library

Manager, Chicago Operations Office, DOE

Mathematics and Computer Science Division Review Committee:
W. W. Bledsoe, The University of Texas, Austin

. Buzbee, National Center for Atmospheric Research

. Glimm, State University of New York at Stony Brook

. Heath, University of Illinois, Urbana

T B

. Infante, University of Minnesota
0’Leary, University of Maryland

D O M =E 4w

E. 0’Malley, Rensselaer Polytechnic Institute

M. H. Schultz, Yale University
J. Cavallini, Department of Energy - Office of Scientific Computing
F. Howes, Department of Energy - 0Office of Scientific Computing

